

スマート草刈り技術の開発状況と普及課題

~どうして、完全自動の草刈機が普及していないのか?~

菊地麗

(国研)農業・食品産業技術総合研究機構 西日本農業研究センター 中山間営農研究領域 生産環境・育種グループ 主任研究員 **NARO**

中山間地域における草刈り作業の課題

2024年9月3日

西農研 菊地

中山間地域農業における大型化の限界

	大型機	中型機	小型機	手持ち可能機械
重さ	数トン	数百キロ	数十キロ	数キロ
作業効率	高い		低い	
運搬・進入の困難度	困難		容易	
トラブル復旧の困難度	困難		容易	
作業機例	トラクタ用 モア トラクタ、 コンバイン <u>市販ロボッ</u> ト農機	乗用草刈機 リモコン式草刈 機 田植え機、 小型トラクタ	自走式草刈機 農薬散布用 ドローン	刈払機 ロボット芝刈機 ・ 兼ねない

- 大型機は、作業幅が広く単純な作業効率は高いが、使用場面 が限定され、トラブル復旧に<u>も多大な労力</u>が必要
- 小型機は、狭い法面でも使用でき、トラブル復旧も容易 小型機のスマート化が必要

中山間地域のスマート化の課題

コンクリート構造物

法面内埋設構造物

自動車自動走行システムとの比較

	自動車		草刈機	
走行・作業箇所	道路、	制限困難	畦畔・法面、	制限可能
順路情報	あり	カーナビ・交通情報	なし	
周辺施設情報	あり	カーナビ	なし	
第三者の立ち入り	あり、	歩行者、他の車	ほぼなし	
トラブル発生時 のリスク	高い、	大型・高速	低い、小型・	低速
走行・作業面 の規則性	•	白線、 雲識、看板	なし、 季節・年によ	つて変化

- 自動車の場合、目的地を入力すれば自動で走行経路が算出され、周辺施設情報と合わせてドライバーに提供される
- 自動運転では、周囲の情報をLiDARやカメラ等で取得し、他 の車や歩行者、標識、信号、白線等を認識し利用している

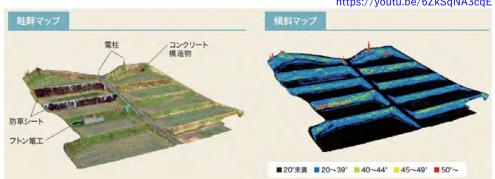
これらの情報があれば草刈り作業でも 安定した自律作業が実現可能?

畦畔管理データベースの開発

- 複雑な中山間地域で、どこの畦畔で、どれくらいの 時間、草刈機の自律作業が可能か?使えない場所は どうするのか?
- 集落全域をカバーする畦畔数500以上の畦畔管理DB
- 草刈り作業手法の提案・作業時間の推定を行う草刈 り作業最適化アルゴリズム

畦畔管理DB 草刈作業最適化 アルゴリズム 作業記録 傾斜マップ 航空写真 UAV空中三角測量 ドローン測量

作業手法の適否、位置情報、 作業情報、危険箇所情報等


危険箇所、埋設物の位置推定、 適否決定、作業手法の提案

カメラで作業記録 位置情報記録から作業適否の推定 作業者への聞き取り調査 集落内の傾斜を見える化 草刈り作業手法ごとの推奨角度

詳細な3次元形状の取得

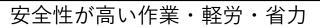
- 畦畔ごとの傾斜角度の特徴が把握できるので、最適なリモコン式草刈機の 機種の選定や、作業時間を予測することが可能
- 法面内の遷急点などの危険箇所を可視化できるので、リモコン式草刈機の 転落や作業者の下敷き事故などのリスクを軽減可能

https://youtu.be/6ZkSqNA3cqE

畦畔傾斜マップの作成例1)

1)清水裕太・菊地 麗 ドローン空撮ステレオ画像による畦畔傾斜マップの作成、農研機構技法、5: 22-25 https://www.naro.go.ip/publicity_report/publication/files/naro_technical_report_no5.pdf

市販化している草刈機の種類



作業者が 立つことができれば どこでも使える

進入・設置できるか、 滑落・停止しないかは、 やってみないとわからなし

経験不足

現行作業・高リスク

自律作業

刈払機

自律型草刈機 ロボット芝刈機

法面用草刈機 自走式草刈機

リモコン式草刈機

自律型草刈機・芝刈機とは?

□基本的な特徴

- エリアワイヤ(ビニール電線)を敷設した内側を自動で作業
- エリアワイヤは、地面に5cm以内で埋設するか、地表にペグ で固定
- 刈刃を回転させながらエリア内をランダム走行等を行う
- 電池が少なくなったら自動で充電ステーションに帰還
- スマホアプリ、スケジュール指定可能
- 近接センサ・接触センサなどで障害物検知
- 主に家庭用の芝管理用に開発、小型 10~30kg程度
- 本体・充電設備等で50~100万円以下
- 海外メーカ製が多いが国内メーカからも市販化
- 雑草刈りタイプ、4輪駆動タイプなど新しい機種も
- 家庭用100V電源の他、太陽光パネルオプションも利用可能

自律型草刈機・芝刈機の例 雑草刈り

□和同産業 ロボモア



自律型草刈機・芝刈機の例 雑草刈り

ロメンテナンス

- 残渣の除去
- ・ブラシ、ヘラ
- 一部機種は水洗い可
- 高圧水洗負荷
- 金属フリー刃の 摩耗チェック

自律型草刈機・芝刈機の例

18

□トラブル例

埋没 湿った圃場

西農研 菊地

2024年9月3日

取り組み内容

- 自律型草刈機は、自動で作業してくれるが、メンテナンス作業やトラブル時の復旧作業が必要
- ほっときっぱなしはできない

- 傾斜地を含む作業道で、自律型草刈機の運用試験 を行い、エラー発生状況を調査、
- 草刈り作業実績データとして、 エラー内容や復旧作業時間についても収集

材料および方法

ロボット芝刈機(Automower 435X AWD、Husqvarna) 最大傾斜角35度、4輪駆動、関節式ボディ

バッテリー

回転

刈刃

本体質量 17.6 kg

全長 93 cm

全幅 55 cm

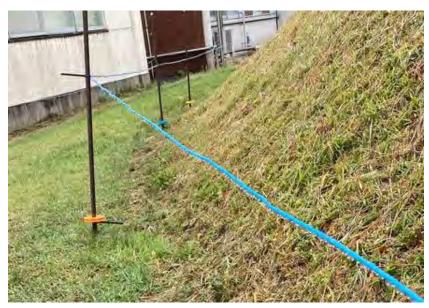
全高 29 cm

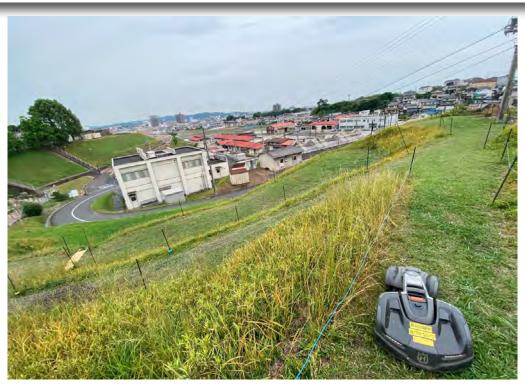
刈高調整可能 20-60mm、5mm間隔、9 段階

GPS、マップ生成機能

70万円程度

安定運用に課題


■野生動物による被害


- 昨年度、エリアワイヤを敷設して別の機体を運用したが、 **ほぼ毎日**、野生動物による**切断**が発生
- かじられ、ビニールより線が細かく切断、 引っ張り、ペグごと抜かれて斜面に落ちてるなど・・・
- 断線箇所を見つける作業、張り直しなどの メンテナンス作業に時間がかかる
- 野生動物調査用センサー付きカメラでモニタリング

材料および方法

- 本運用試験では、支柱から吊るす形で配置
- 支柱打ち込み作業が必要
- 断線箇所がわかりやすく、張り直 しも簡単
- 切断被害ゼロに!

吊り下げしなくても

- ・太めの単線でも噛み切り切断被害なし
- ・一部機種は高耐久ワイヤーを標準付属

支柱がトラブル原因に

- 関節部分にひっかかって停止→支柱にクッションを設置
- カバーの隙間にワイヤがひっかかる→隙間をテープで覆う
- 安定運用へ

材料および方法

- 稼働期間:2023年5月30日~7月6日
- 稼働時間:月~木24時間、金0~14時
- エラー内容:
 - 管理用アプリAutomower Connectのエラー履歴を収集・記録
- 復旧作業時間:
 - エラー発生現場に到着してから、復旧操作完了までの時間 移動時間は含まない
- 復旧操作:機体の物理スイッチとジョグホイールで再開操作
- エラー内容、発生回数・ 復旧作業に要した時間を比較

おわりに

□まとめ

- 傾斜地を含む作業道でオートモアを運用
- エリアワイヤを支柱に吊り下げる形式
- 野生動物によるエリアワイヤ切断は吊り下げること で防止可能
- 全エラー回数33回中、支柱や斜面に衝突したエラー が17回発生
- 斜面に転落すると復旧作業に時間がかかる
- エリアワイヤ吊り下げ形式は、 降雨や紫外線の影響を受けやすいので、 運用試験を継続中
- ビニール被覆の劣化、漏電、腐食などの可能性

おわりに

□今後の課題

- 遠隔地で運用した場合、数秒~数分の復旧作業のために現場 まで向かう移動時間が負担になる
- 軽微なエラーは遠隔からリセット操作が可能となったため、 重大なエラーを監視カメラなどで遠方から確認できると良い
- 8月に入ると充電エラーが頻発、暑くて充電できない
- 夏場日中の稼働はできない、夕方・夜間作業
- 適切な初期設置ができればエラー回数も低減
- ちょっとした凹凸にひっかかることも →スコップ等で補修できる
- ロボットにやさしい環境は、人にもやさしいかも?
- 将来的には、電気牧柵の支柱の活用、ため池周辺の草刈りも 期待
- 草刈り時間ゼロになるかも!?

本研究成果の一部は、JST研究成果展開事業研究成果最適展開支援プログラムA-STEP産学共同JPMJTR22R1・JPMJTR21R1の支援を受けたものです。 2024年9月3日